

21-23 OTTOBRE 2024 ANCONA, EGO HOTEL

Simona Sica

Il secondo trapianto è ancora utile? NO

Fondazione Policlinico Universitario A. Gemelli IRCCS

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Alexion						х	
Amgen						х	
Astellas						х	
Novartis						х	
Jazz			х			х	
Sobi						х	
Pierre Fabre						х	
Kyte Gilead						х	

Secondo trapianto!

Razionale: rescue di un paziente con LAM recidivato: quando?

per chi?

perché?

dopo quale tipo di trapianto?

in quale stato di malattia?

Una speranza per chi?: ematologo? Paziente? familiari? Donatore?

2632 second allogeneic transplantations (40% Fifteen percent of the patients remained relap Patients with CML had a better survival than p In a multivariate analysis, factors associated v duration after the first transplantation, longer

0.80 0.60 0.40 0.20 0.80 0.80 0.60 0.40 **GvHD** after

st transplant

nt-related m

ntation.

remission
, absence of
:ation

rvival.

Ruutu T et al: BMT 2015

FHCRC

81 pazienti

AML/MDS

2006-2022

1% dei trapianti

10% IBMTR

Specifically, the primary reason(s) precluding HCT2 were leukemia-related in 152 (50%) patients, toxicities/adverse events following salvage therapy in 24 (8%) patients, complications from HCT1 in 9 (3%) patients, and a combination of these factors in 21 (7%) patients. Additionally, 97 (32%) patients underwent alternative therapeutic approaches (eg, DLI) with HCT2 not being considered, and 2 (1%) patients were in the process of planning HCT2 at the time of the chart review

NO MOLECULAR DATA

Rodríguez-Arbolí E et al TCT 2024

ELN 2022 cytogenetic risk, n (%)	
Favorable	4(5)
Intermediate	48 (59
Adverse	26 (32
Missing/not reported	3 (4)
Secondary disease, n (%)	16 (20

A)							B)					
Cumulative Incidence of Relapse			2 om Trans MRD-po		4 (ears) Active dis	5	Relapse-Free Survival			2 m Trans		4 ears)
At risk							At risk					
MRD-negative	43	20	17	17	13	12	MRD-negative	43	20	17	17	13
MRD-positive	16	7	3	3	3	1	MRD-positive	16	7	3	3	3
Active disease	22	5	3	3	3	2	Active disease	22	5	3	3	3

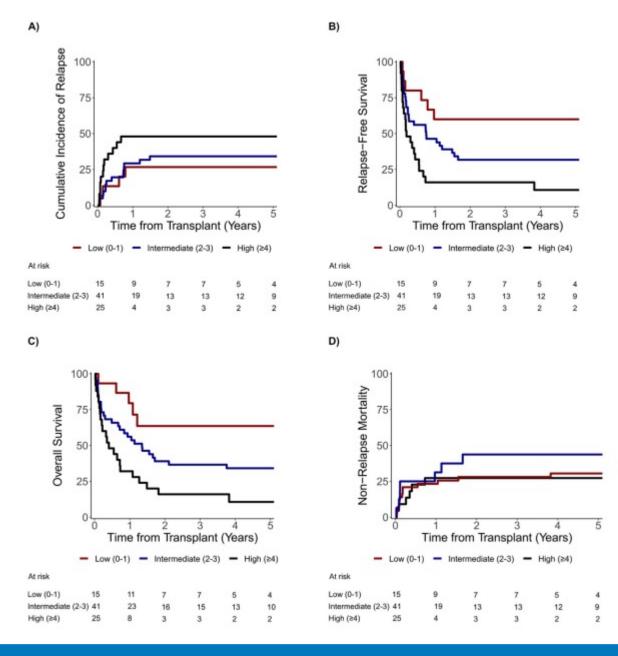
D)

Disease status at second HCT, n (%)					
Morphologic remission (MRD ^{neg}) 43					
Morphologic remission (MRD ^{pos})	16 (20)				
Active disease	22 (27)				

Time from Transplant (Years)

MRD-negative — MRD-positive — Active disease

Time from Transplant (Years)


MRD-negative — MRD-positive — Active disease

DIFFERENT DONORS

Rodríguez-Arbolí E et al TCT 2024

<6 MESI MALATTIA ATTIVA HCT-CI ALTO

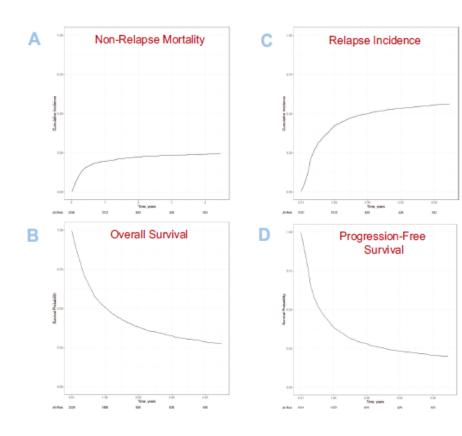
Rodríguez-Arbolí E et al TCT 2024

How risky is a second allogeneic stem cell transplantation?

retrospective EBMT data set analysis. 3356 second alloSCTs performed 2011–21

AML 60%, ALL 15%, and MDS 8%.

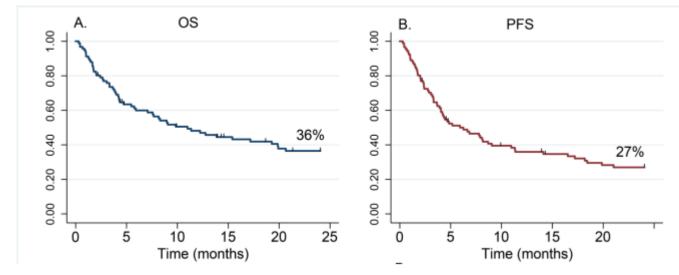
Outcomes at two years after second alloSCT were: NRM 22%, relapse incidence 50%, overall survival 38%, and progression-free survival 28%


risk factors for increased NRM were: older age, low performance score, high disease-risk-index, early relapse after the first alloSCT, unrelated/haploidentical donor, and GVHD before second alloSCT.

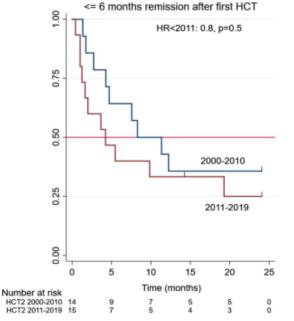
preferential use of a different donor (80%) at second alloSCT from first alloSCT. different donor was not associated with any of the survival or GVHD endpoints

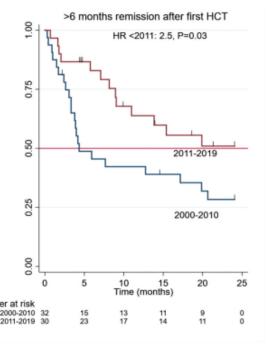
NO MOLECULAR DATA

Penack O et al : Leukemia 2024


Myeloablative conditioning			Delay first to second alloSCT, years
No	1207 (36.4%)	1828 (56.1%)	Median [Q1, Q3]
Yes	2110 (63.6%)	1432 (43.9%)	[Min, Max]
Missing count	39	96	Delay relapse to second alloSCT, years
Total body irradiation			Median [Q1, Q3]
No	2446 (73.0%)	2543 (76.6%)	[Min, Max]
Yes	905 (27.0%)	778 (23.4%)	
Missing count	5	35	
GVHD prevention regimen			
Cyclosporine A + MMF based	1457 (45.0%)	1223 (38.7%)	
Cyclosporine A + MTX based	936 (28.9%)	705 (22.3%)	
Cyclosporine A based	393 (12.1%)	383 (12.1%)	
Tacrolimus/Sirolimus + MMF based	242 (7.5%)	538 (17.0%)	
Tacrolimus/Sirolimus + MTX based	48 (1.5%)	44 (1.4%)	
Tacrolimus/Sirolimus based	58 (1.8%)	99 (3.1%)	
Other	103 (3.2%)	168 (5.3%)	
Missing count	119	196	
In vivo T cell depletion for secon	d alloSCT		
No		1560 (48.6%)	
Campath		142 (4.4%)	
ATG		1506 (46 0%)	

Penack O et al : Leukemia 2024


17 (0.9, 3.4) 0.1-27.8


0.4 (0.2, 0.8) 0.0-19.6

No molecular data

Yalniz FF et al TCT 2021

Il caso di TP53

Author	Study type	Disease	Pts with TP53 LOF receiving allo-HCT	Subset with high- risk cytogenetics	DFS from time of HCT	OS from time of HCT			
MDS*	MDS+								
Lindsley et al ²⁵	Registry	MDS	TP53 mut: 289 pts	Not listed	Not listed	3-y OS: ~15% (complex)			
Yoshizato et al ²⁶	Registry	MDS including subset with sAML	TP53 mut: 98 pts	Complex: 86 pts	Not listed	Median OS: 4.3 mo 3-y OS: ~10% (complex)			
AML									
Middeke et al ²³	Registry	AML	17p abnl: 201 pts	Monosomal: 77 pts Complex: 180 pts	3-y EFS: 9% (monosomal) 3-y EFS: 9% (complex)	3-y OS: 11% (monosomal) 3-y OS: 11% (complex)			
Middeke et al ²²	3 multicenter clinical trials	AML	TP53 mut: 40 pts	Adverse†: 40 pts	3-y PFS: 7.5% (adverse)	3-y OS: 10% (adverse)			
Luskin et al ²⁷	Single center	AML	TP53 mut: 9 pts	Adverse‡: 6 pts	All relapsed (adverse; range, 1.6-18.6 mo after HCT)	Not listed			
Poire et al ²⁴	Registry	AML	17p abnl: 125 pts	Monosomal: 86 pts -5/5q-: 58 pts	2-y: 17% (monosomal) 2-y: 11% (-5/5q-)	2-y OS: 19% (monosomal) 2-y OS: 16% (-5/5q-)			
Najima et al ²⁸	Single center	AML (nonremission)	<i>TP53</i> mut: 23 pts	Monosomal: 11 pts	Not listed	All died within 12 mo post allo-HCT (monosomal)			
Grob et al ¹⁸	4 multicenter clinical trials	MDS-EB AML	TP53 mut: 59 pts	Complex: 48 pts	Not listed	3-y OS: ~10% (complex)			
Loke et al ²¹	Registry	AML	TP53 mut: 179 pts	17p loss and/or complex: 126 pts	2-y PFS: 15.2% (17p loss and/or complex)	2-y OS: 24.6% (17p loss and/or complex)			

AML				
Murdock et al ³⁷	Single center	33 pts	VAF < 0.1%	Pts with TP53 mut clearance before allo-HCT did not experience DFS benefit
Badar et al ³⁸	Registry	68 pts	"Clearance by NGS testing," not otherwise defined	Pts with TP53 mut clearance before allo-HCT did not experience DFS benefit

VAF> o< 40%

the survival benefit of allo-HCT in *TP53*-mutated MDS/AML with biallelic loss and/or adverse-risk cytogenetics has not been established.

Disease characteristics	Patient characteristics	Offer allo-HCT?	Comments
Monoallelic <i>TP53</i> mutation without complex karyotype	Fit for allo-HCT	Yes, if both criteria were met	Standard fitness criteria applied.
Biallelic <i>TP53</i> loss ± complex karyotype	KPS ≥ 90 and HCT- CI < 4+	Consider	*Score intended as provisional guidance rather than absolute threshold. Consider the use of alternative nonrelapse mortality scoring systems. 70,71 Donor options may modify risk assessment (eg, we are less likely to pursue allo-HCT in an older patient with these characteristics if only alternative donor is available). Must clearly discuss risks, benefits, and expectations regarding posttransplant prognosis.
Biallelic <i>TP53</i> loss ± complex karyotype	KPS < 90 HCT-CI ≥ 4*	No	Consider referral for second opinion regarding allo-HCT.

Nawas TM et al Blood 2024

In conclusione

No alla maggior parte dei pazienti

Si a pazienti giovani, oltre 6 mesi da 1° TX, MRD- o senza malattia attiva e basso HCT-CI, testing e retesting NGS, ma quanti sono? Cambio donatore HLA loss?

Alternative

Targeted therapy

Trials clinici

DLI («no apparent difference in OS whether an allo-HCT2 or DLI was prescribed" JAMA 2018), stessi caveats <6m

Terapia di palliazione

L'altra faccia è il donatore

